Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

نویسندگان

  • M. A. Olshanskii
  • A. Reusken
  • MAXIM A. OLSHANSKII
چکیده

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time – continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite element spaces consist of traces of standard volumetric elements on a space-time manifold resulting from the evolution of a surface. We prove first order convergence in space and time of the method in an energy norm and second order convergence in a weaker norm. Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in a duality argument used in the proof of the second order convergence estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis and Scientific Computing Preprint Seria An adaptive octree finite element method for PDEs posed on surfaces

The paper develops a finite element method for partial differential equations posed on hypersurfaces in R , N = 2, 3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. Th...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria An Eulerian space-time finite element method for diffusion problems on evolving surfaces

In this paper, we study numerical methods for the solution of partial differential equations on evolving surfaces. The evolving hypersurface in Rd defines a d-dimensional spacetime manifold in the space-time continuum Rd+1. We derive and analyze a variational formulation for a class of diffusion problems on the space-time manifold. For this variational formulation new well-posedness and stabili...

متن کامل

Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations (PDEs) posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time–continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface fi...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces

The paper studies a method for solving elliptic partial differential equations posed on hypersurfaces in RN , N = 2, 3. The method allows a surface to be given implicitly as a zero level of a level set function. A surface equation is extended to a narrow-band neighborhood of the surface. The resulting extended equation is a non-degenerate PDE and it is solved on a bulk mesh that is unaligned to...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria Non-degenerate Eulerian finite element method for solving PDEs on surfaces

The paper studies a method for solving elliptic partial differential equations posed on hypersurfaces in RN , N = 2, 3. The method builds upon the formulation introduced in Bertalmio et al., J. Comput. Phys., 174 (2001), 759–780., where a surface equation is extended to a neighborhood of the surface. The resulting degenerate PDE is then solved in one dimension higher, but can be solved on a mes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013